Транспорт у растений
Клетки обмениваются различными веществами с окружающей их средой в результате диффузии. Однако перенос веществ обычной диффузией на большие расстояния неэффективен; возникает необходимость в специализированных системах транспорта. Такой перенос из одного места в другое осуществляется за счёт разности давлений в этих местах. Все переносимые вещества движутся с одинаковой скоростью в отличие от диффузии, где каждое вещество движется со своей скоростью в зависимости от градиента концентрации.
У животных можно выделить четыре основных типа транспорта: пищеварительную, дыхательную, кровеносную и лимфатическую системы. Часть из них были описаны ранее, к другим мы перейдем в следующих параграфах.
У сосудистых растений передвижение веществ осуществляется по двум системам: ксилеме (вода и минеральные соли) и флоэме (органические вещества). Передвижение веществ по ксилеме направлено от корней к надземным частям растения; по флоэме питательные вещества движутся от листьев.
Одним из важнейших механизмов транспорта веществ в растении является осмос. Осмос – это переход молекул растворителя (например, воды) из областей с более высокой концентрацией в области с более низкой концентрацией через полупроницаемую мембрану. Этот процесс похож на обычную диффузию, но протекает быстрее. Численно осмос характеризуется осмотическим давлением – давлением, которое нужно приложить, чтобы предотвратить осмотическое поступление воды в раствор.
В растениях роль таких полупроницаемых мембран играют плазматическая мембрана и тонопласт (мембрана, окружающая вакуоль). Если клетка контактирует с гипертоническим раствором (то есть раствором, в котором концентрация воды меньше, чем в самой клетке), то вода начинает выходить из клетки наружу. Этот процесс называется плазмолизом. Клетка при этом сморщивается. Плазмолиз обратим: если такую клетку поместить в гипотонический раствор (с более высоким содержанием воды), то вода начнёт поступать внутрь, и клетка снова набухнет. При этом внутренние части клетки (протопласт) оказывают давление на клеточную стенку. У растительной клетки набухание останавливается жесткой клеточной стенкой. У животных клеток жёстких стенок нет, а плазматические мембраны слишком нежны; необходим особый механизм, регулирующий осмос.
Еще раз подчеркнём, что осмотическое давление – величина скорее потенциальная, чем реальная. Она становится реальной только в отдельных случаях – например, при её измерении. Также необходимо помнить, что вода движется в направлении от более низкого осмотического давления к более высокому.
1
|
Общее строение корня |
2
|
При некоторых условиях корни растений могут принимать необычную форму |
Основная масса воды поглощается молодыми зонами корней растений в области корневых волосков – трубчатых выростов эпидермиса. Благодаря им значительно увеличивается всасывающая воду поверхность. Вода поступает в корень за счёт осмоса и движется вверх к ксилеме по апопласту (по клеточным стенкам), симпласту (по цитоплазме и плазмодесмам), а также через вакуоли. Надо заметить, что в клеточных стенках имеются полоски, называемые поясками Каспари. Они состоят из водонепроницаемого суберина и препятствуют продвижению воды и растворённых в ней веществ. В этих местах вода вынуждена проходить через плазматические мембраны клеток; полагают, что таким образом растения защищаются от проникновения токсичных веществ, патогенных грибов и т. п.
3
|
Корневые волоски |
4
|
Пояски Каспари |
Подъём воды по ксилеме происходит, по-видимому, за счёт испарения воды в листьях. В процеcсе испарения в кроне образуется недостаток воды. Поверхностное натяжение в сосудах ксилемы способно тянуть вверх весь столб воды, создавая массовый поток. Скорость подъёма воды составляет около 1 м/ч (до 8 м/ч в высоких деревьях); чтобы поднять воду к вершине высокого дерева, требуется давление порядка 40 атм. Следует иметь в виду, что одни только капиллярные эффекты способны поднять воду на высоту не более 3 м.
5
|
Различные пути транспорта воды |
Вторая важная сила, участвующая в подъёме воды, – это корневое давление. Оно составляет 1–2 атм (в исключительных случаях – до 8 атм). Этой величины, конечно, недостаточно, чтобы в одиночку обеспечить движение жидкости, но её вклад у многих растений несомненен.
6
|
Строение листа |
7
|
Устьице (под электронным микроскопом) |
Попадая по ксилеме в листья, вода и минеральные вещества распределяются через разветвлённую сеть проводящих пучков по клеткам. Движение по клеткам листа осуществляется, как и в корне, тремя способами: по апопласту, симпласту и вакуолям. На свои нужды растение использует менее 1 % поглощаемой им воды, остальное в конце концов испаряется через восковый слой на поверхности листьев и стеблей – кутикулу (около 10 % воды) – и особые поры – устьица (90 % воды). Травянистые растения теряют в день около литра воды, а у больших деревьев эта цифра может доходить до сотен литров. Испарение воды (транспирация) осуществляется за счёт энергии солнца. Проще всего транспирацию наблюдать, если накрыть растение в горшке колпаком; на внутренней поверхности колпака будут собираться капельки жидкости.
8
|
Под действием корневого давления вода выделяется через устьица листьев |
На скорость испарения влияют многие факторы; как внешние условия (свет, температура, влажность, наличие ветра, доступность воды в почве), так и особенности строения листьев (площадь поверхности листа, толщина кутикулы, количество устьиц). Ряд внешних факторов приводит к уменьшению диффузии воды из листьев, другие (например, отсутствие света или сильный ветер) вызывают замыкание устьиц (благодаря работе особых замыкающих клеток). Растения засушливых регионов имеют специальные приспособления для уменьшения транспирации: погруженные глубоко в листья устьица, густое опушение из волосков или чешуек, толстый восковой налёт, превращение листьев в колючки или иглы и другие. Осенний листопад в умеренных широтах также призван уменьшить испарение воды, когда наступят холода.
9
|
Недостаток различных минеральных веществ на примере листьев томата. Слева направо: контрольный образец, растения, страдающие от недостатка меди, марганца, цинка, хлора |
Из почвы растение получает не только воду, но и минеральные соли. Эти вещества движутся в корнях под действием диффузии. За счёт энергии дыхания возможен также их активный транспорт против градиента концентрации. Попадая в ксилему, минеральные вещества разносятся по всему организму с массовым током воды. Основным потребителем этих веществ являются растущие части растения.
Некоторые минеральные вещества, выполнив свою полезную функцию, могут перемещаться дальше вверх или вниз по флоэме. Это происходит, например, перед сбрасыванием листьев, когда накопленные листьями полезные вещества сохраняются, откладываясь в других частях растения.
У многоклеточных растений есть ещё одна транспортная система, предназначенная для распределения продуктов фотосинтеза, – флоэма. В отличие от ксилемы, органические вещества могут транспортироваться по флоэме и вверх, и вниз. 90 % переносимых веществ составляет сахароза, которая практически не участвует в метаболизме растения непосредственно и поэтому является идеальным углеводом для транспорта. Скорость движения сахара обычно составляет 20–100 см/ч; за день по стволу большого дерева может пройти несколько килограммов сахара (в сухой массе).
Каким образом столь большие потоки питательных веществ могут протекать в тонких ситовидных трубках флоэмы (их диаметр не превышает 30 мкм), не совсем понятно. По-видимому, вещества по флоэме распространяются массовым током, а не диффузией. Возможными механизмами транспорта являются обычное давление или электроосмос.
10
|
Ситовидная трубка в разрезе |
При повреждении флоэмы ситовидные трубки закупориваются в результате отложения каллозы на ситовидных пластинках. Безвозвратная утечка питательных веществ обычно прекращается уже через несколько минут после повреждения.